www.itim.unige.it/pm

# Project Management for Industrial Plants Gestione dei Progetti d'Impianto







#### Prof. Agostino G. BRUZZONE

DIPTEM, University of Genoa via Opera Pia 15 16145 Genova, Italy Email agostino@itim.unige.it URL www.itim.unige.it/pm

DIPTEM University of Genoa

Copyright © 1998-2019 Agostino Bruzzone, Simulation Team



1/2

## What is a Project?

Organizations make Works; these works generally are divided into:

- Projects
- Operations



They share resources constraints, need of planning, execution and control, people empowerment. While Operations are in a such way continuative and repetitive, Projects are *exclusive* and *temporary* 

A Project is a sequence of temporary activities devoted to the creation of a single product/service. (Project Management Institute)



University of Genoa

## What is an Industrial Plant?

• The Industrial Plant is a complex system including Machines, Equipment and Services devoted to allowing the processing of Raw Materials or Derivatives into Final Products and/or Goods.



**Project Management for Industrial Plants** 

### Industrial





**Industrial:** Consisting in industry; pertaining to industry, or the arts and products of industry; concerning those employed in labor, especially in manual labor, and their wages, duties, and rights.

magna industria bellum apparavit Cornelii Nepotis, (55 BC) de viris illustribus







5

## **4 M for a Plant Creation**

#### Plants are often the result of the classic 4M synergy:

- Money
- Machinery
- Men
- Materials

Project Management goal is to finalize the Development of an Industrial Plant







# A Plant as Summary of Many Elements



www.itim.unige.it/pm

The Plants are characterized by a Systemic Vision of the different elements that are usually organized in terms of:

- Systems
- Subsystems
- Components







Copyright © 1998-2019 Agostino Bruzzone, Simulation Team

# What is an EPCC?

Engineering, Procurement, Construction and Commissioning (EPCC) are Projects covering the whole development process of an Industrial Plant. Often these Projects are simply called EPC (Engineering, Procurement and Construction) and indeed there are other kind of contracts regulating Industrial Plant Construction extending the life cycle (e.g. Operations & Management, Construct Build Operate











#### www.itim.unige.it/pm



## **EPC** Projects

- EPC Engineering Procurement & Construction: the contractor provides engineering, procurement and construction services. Think Design & Construct style contracts, where the project is largely Contractor managed and the cost risk and control are weighted towards the Contractor and away from the Owner.
- EPCC: Engineering Procurement Construction and Commissioning
- EPCI: Engineering, Procurement, Construction and Installation (e.g. off shore installations)
- EPCM: Engineering, Procurement, Construction, Manage: Contractor is responsible for total construction right from conceptual design to Final handing over to owner; Other companies are contracted by the Owner to provide construction services and they are usually managed by the EPCM contractor on the Owner's behalf.





### **Projects vs. Labels**

- EPMC: Engineering, Procurement & Management of Construction; the executor will be someone else deputed in consultation with owner
- BOOT: build Own Operate Transfer (usually after 7 years or as contract with
   DBOOT: Design Build Own Operate Transfer (usually after 7 years or as contract with owner)
- OM: Operation and Maintenance
- LSTK: Lump Sum Turnkey
- **PFI: Private Finance Initiative**
- PPP: Public Private Partnership



 PMC: Project Management Consultant: the manager of a project in behalf of the Client. The PMC handle the contracts issued by the Client to perform a project such as EPC's, Services.



## **Some Definitions of Project**

#### The Project is:





A) The set of all activities required for achieving a not continuous and not repetitive specific objective, obtained by coordinating specialized relationships, and by controlling the achievement of the objective at specific conditions during all the period of realization. (G.F.Aragozzini)

B) A combination of human resources not joined into a temporary organization in order to achieve a defined objective with limited resources (Project Management Institute 87)

C) A temporary process devoted to the production of one or more units of a single product or service whose features are gradually elaborated (Project Management Institute 92)



## **Project Management and other Activities**

**Projects Management have aspects in common with other disciplines:** 

General Management: common aspects are staff management, resources planning, operations control and others (i.e. law, statistics, logistics, human resource management, information technology) Applicative Areas: projects management often requires specific skills and experiences in applicative sectors related to: *Technical Elements* (i.e. Pharmaceutics, Automotive) *Management Elements* (i.e. Service to Society, Military, etc.) *Industrial Groups* 





# **Typical Characteristics of a Project**

The Project has some common properties:

Well Defined Objectives Unique (not replications) Temporary Multidisciplinary Limited Resources





DIPTEM University of Genoa



# **General Project**



Projects can concern a single division of a structure or more companies, they can be developed by a single person or by thousands, they can require few hundred hours or tens of millions

The Projects deal with different fields and activities: •New Products or Services Development •Structure, Staff or Organization Change •New Transportation System Development •New Informatics System Development or Acquisition •Realization of a new Building •Industrial Plant Design and Realization •Development of an Election Campaign for the politic office •Implementation of a new Methodology of Affairs

DIPTEM University of Genoa



# **Temporariness Concept in Project Management**

Temporary means that each Project has a well defined starting and ending time.

The end is reached when final objectives are achieved. Independently of a project duration, a project is an activity designed with a deadline and not a continuous effort.

Often the Project aims to the realization of continuous activities that survive obviously to the project itself (i.e. project of a new product type) and have a continuous nature. Because of their innate nature:

•Projects have limited time frame in which they are feasible to financial, resources or market constraints.

•The Project team is created ad hoc and decommissioned at the end of the project.





# **Concept of Product/Service Uniqueness**

The Project is devoted to the development of something unique (never developed before); if sometimes the category is very wide (i.e. power plant) this doesn't mean that each realization is equal to the previous. Because each project is unique, it is necessary that it is elaborated progressively.

*'Elaborated'* means analyzed in detail and carefully, *'Progressively'* means by proceeding step by step subsequently









# **Project Example**

A Chemical Plant starts from the definition of process characteristics.



- These specifications are used as support for designing the main parts of the plant.
- These basis are used for the engineering design of the process, of the mechanical components of plant units and auxiliary services and infrastructure services.
- These projects are the base for constructive designs development
- During the construction, the designs are evaluated and customized based on the needs and changes concurrently approved.
- During test and check, new elaborations of characteristics are managed and final calibrations are provided



# Internal Projects and Projects for Third Parties

Projects are classified in *internal Projects* and *Projects for third parties*.

In the first type the counterpart is the *client/committing part*, while in the second we define *sponsor* people that promote the Project Development (generally, part of company management or directors). Internal projects generally concern with activities in:

- R&D, BPR (Business Process Re-engineering) Reorganizations
- Reengineering, new systems installation (i.e. introduction of a orders management DBase)
- procedures (i.e. introduction of ISO14001 certification)
- new plants realization (i.e. building a warehouse in Port), etc..

# External Projects for third parties are devoted to provide a product/ service.

DIPTEM University of Genoa



## **Project Management**



#### **Project Management means:**

Application of Knowledge, Experience, Skills, Tools and Techniques in order to design activities for satisfying specifications, requirements and expectations of a Project.







**Objectives** achievement requires to compensate opposing factors: Skills, Time, Costs, Quality, different Customers Requirements,

**Explicit and Implicit Specifications (Needs & Expectations)** 

**Jniversity of Genoa** 



# **Project vs Design: 2 Words 2 Concepts**

- Design Technical/Artistic Project of a product/ service/ component
- Engineering Technical Product Design, focusing on implementation phases and product functions
- Drawing Technical Drawings including a formal representation of the Technical Project

A set of activities devoted to the achievement of a specific objective and including even technical project development of components/products



Project



# **Project vs Design: Different Concepts**

#### We consider a new vehicle model development.

Design

Engineering

Drawing Project

DIPTEM University of Genoa

appearance, motorization, structural analysis, functional analysis, sizing etc. **Project Revision in order to make the new vehicle** feasible on existing production lines and in efficient way **Technical Drawings of the new vehicle Project devoted to the development of a new vehicle:** market analysis, engineering team management, development time planning, production process development, new technologies development, cost and feasibility analysis, new vehicle production and commercial systems implementation.

**Development of technical features of the new vehicle:** 



www.itim.unige.it/pm

# "Control" Word

Control will be used with the English meaning

#### In Italian "Control" refers to:

Observation of system evolving and its status (i.e. check about start-up pump power)

**2** Observed System regulation (i.e. combined cycle control system)

In English Language 'Control' means the second definition (regulate, command) and this is the meaning we will use (i.e. Cost Control: observe and regulate/ maintain costs during the project)







### **PM** Areas

#### **Project Management**







**Project Management for Industrial Plants** 

# **Project Management Activities**

#### Project Integration Management

1.1 General Plan development1.2 Project Plan Execution1.3 Control of Project Changes

Project Scope Management 2.1 First Analysis
2.2 Objectives Planning
2.3 Objectives Definition
2.4 Objectives Verification
2.5 Control of Objectives Changes

#### Project Time Management

3.1 Activities Definition
3.2 Activities Sequence
3.3 Duration Activities Estimation
3.4 Scheduling Development
3.5 Scheduling Control





**Project Management for Industrial Plants** 

www.itim.unige.it/pm

# **Project Management Activities**

#### **Project Cost** Management

**4.1 Resources Planning 4.2 Costs Evaluation 4.3 Costs Budget** 4.4 Costs Control

#### **Project Quality** Management

**5.1 Quality Planning 5.2 Quality Policies Implementation 5.3 Quality Control** 

#### **Project Human Resources** Management

**6.1 Planning of Project Organization** 6.2 Staff Hiring **6.3 Team Work Development** 





# **Project Management Activities**

#### **Project Communication** Management

7.1 Communications Planning 7.2 Information Distribution **7.3 Continuous Report on measured Performances** 7.4 Administrative Close of Documentation

#### **Project Risk** Management

#### **Project Procurement** Management

8.1 Risbs Identification 8.2 Risks Quantification 8.3 Risks Solutions Development **8.4 Control of Applied Countermeasure** 

**9.1 Suppliers Contracts Planning** 9.2 Proposals Acquisition Planning 9.3 Offers and Proposals Acquisition **9.4 Suppliers Selection** 9.5 Contracts Management and Administration 9.6 Contracts Closure





# Project Management Similar Conditions

**Program Management:** set of coordinated Projects in order to achieve additional advantages (i.e. program of new Swiss defense system development: new aircraft Gripen project, new radar project, production system development project etc.)

Other meanings of *Program*:

Annual Revision of On going Projects Set of continuative activities and not repetitive Project Synonymous Meta Project or Sub Projects

*Sub-projects:* derive from project subdivision in subcomponents that are manageable independently





### **Project Development Phases**

Since the Projects are affected by Stochasticity it is convenient to divide them into *Project Phases* in order to semplify its analysis and connection. The different phases compose the *Project Life Cycle*.

Each Phase ends with a *Deliverable* development. The *Deliverable* refers to a tangible and valuable objective (i.e. feasibility study, checks start up etc.). At the end of a phase it is possible to proceed with the result analysis to verify if it is possible to go to the next step and to apply eventual changes or corrective activities. The Project ending is often defined :*Stage Gate* o *Kill Point* 





### **Project Development Phases for a Plant**

# Often in Constructions sector, it is considered the following classification:

| Ingegneria            | <=> | Engineering   |
|-----------------------|-----|---------------|
| Approvvigionamenti    | <=> | Supplying     |
| Montaggi              | <=> | Erection      |
| Avviamento e Collaudo | <=> | Commissioning |

Generally Engineering is divided into *Basic Engineering* (systems and functional units of the plant) and *Detailed Engineering* (specialized temathics)



# Interactions among the different Plant Project Phases



# **The Project Life Cycle**



www.itim.unige.it/pm

The Project Life Cycle allows to define the outlines of the plant project and eventual links to current activities or activities intended to continue after the project conclusion.

The Project Life Cycle has to define the entities and the deliverables for each phase and it could be more or less detailed. Normally it takes into account the following Considerations :

Costs and required Staff are reduced compared to the middle stages and they go down in the terminal phase

The chances of Success are low at the beginning of the Plant Project and they increase during the project

The Customers Influence in defining product changes and costs decrease during the project development and the cost for eventual changes increases progressively.



www.itim.unige.it/pm

# Some Examples of General Concepts in the Life Cycle



# Development Phases in the Plant Life Cycle



It is possible to identify four main phases: Conceptual

> Very High Influence on the plant costs; it works on a project configuration only set up and to be defined, it requires invention creativity capabilities

Definition

and

High Influence on the Plant Costs, it works on a detailed project configuration still being defined, it requires analytical capabilities Development

It has a direct influence on the Plant Costs, this influence decreases very fast, it works on a *frozen* configuration and requires management capabilities

Delivery

Low influence on the costs, fixed configuration, it requires management capabilities



### The Logistic Curve or "S" Curve

The *"S"Curve* or *Logistic Curve* reproduces the cumulative trend of the Plant Project (in term of costs, working progress, etc.). This obviously means to integrate resources employment curves in the time that correspond to instead bell curves.. Logistic Curve

P.F. Verhulst (1845) F(x) = R x (1 - x) x(t+1) = x(t) + F(x)

University of Genoa





# Rolling Wave for Strategic Analysis

Often more projects are managed in parallel; in the strategic planning it is possible to use a periodic technique operating in a limited temporal frame that allows constant updates ("rolling wave") so that it is possible to identify the different tasks of the different projects.





# Life Cycle Representation

Short Take-Off Vertical Landing (STOVL) F-35B

An Example is the American Defence Minister Acquisition System that includes the phases and the deliverables of each milestone.

#### Life Cycle for Defense Acquisition US DoD 5000.2 (rev 2/26/93)

| Needs Mission<br>Identification |                                 | Phase O<br>Concepts<br>and Ideas<br>Exploration<br>and Definition |                    | Phase I<br>Demonstration<br>and Validation |                    | Phase II                                           | Phase III e Phase IV |                                 |                    |                                      |         |
|---------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------|--------------------------------------------|--------------------|----------------------------------------------------|----------------------|---------------------------------|--------------------|--------------------------------------|---------|
|                                 |                                 |                                                                   |                    |                                            |                    | Engineering<br>Development<br>and<br>Manufacturing |                      | Production and<br>Deployment    |                    | Operations and<br>Support            |         |
|                                 | Mileston<br>New Cor<br>Study Ap | ncepts<br>pproval                                                 | Mile<br>Der<br>App | estone I<br>nonstration<br>proval          | Mile<br>Tec<br>App | estone II<br>hnical Project<br>proval              | Mile<br>Pro<br>App   | estone III<br>duction<br>proval | Mile<br>Mai<br>App | estone IV<br>in Required C<br>proval | Changes |
|                                 | DIPTEM                          |                                                                   |                    |                                            |                    |                                                    |                      |                                 |                    |                                      | न्यू    |



# Morris Representation of the Life Cycle

For Construction Projects it is often proposed the Morris vision of the Project Life Cycle: Substantial full Full Efficiency




#### **Murphy Representation**

For Pharmaceutic Projects it is proposed the Murphy representation of the Project Life Cycle:



University of Genoa

## **Muench & Co. Representation**

For Software Projects it is visualized Muench Representation





Copyright © 1998-2019 Agostino Bruzzone, Simulation Team

# Nested Life Cycles for plant Management



# Plants have several feasible life cycle linked among that are nested each other

#### Company Investment Life cycle

| Strategic<br>Planning | Identificat<br>Needs              | tion Feasibility   | Investment<br>Achievement | Return on Investment             | Investment<br>Conclusion |
|-----------------------|-----------------------------------|--------------------|---------------------------|----------------------------------|--------------------------|
|                       |                                   |                    |                           |                                  |                          |
| Basic De              | esign                             | Acquisition        | Plant o                   | n going                          | Dismantling              |
|                       |                                   |                    |                           |                                  | Plant Life Cycle         |
|                       |                                   | _                  |                           |                                  |                          |
| Conceptua             | Conceptual phase Planning and Def |                    | on Accomplishment Star    |                                  | art up and Delivery      |
| M                     | Pla                               | nt Project Life cy | vcle                      | Committel 0 1000 2010 Areating P |                          |



#### **Curve of the Precision along Time**





#### **The Stakeholder Concept**

*Stakeholders* are all the people actively involved in the project and their satisfaction influences the Project success. Among the others (i.e. Project Team families), there are:

- The Project Manager
- The Customer it is necessary to remark the presence of different types of customer (i.e. doctor and patient for a new medicine)
- The Involved Structure in the Project
- Sponsors (supporting the project in different ways)

It is difficult to satisfy their requirements and their expectations of:

The subjects are different and often the objectives are not clear for the subjects themselves, often they are in conflict, etc. Normally the Customer requirements prioritize, but it is not possible to disregard those of the other subjects.

DIPTEM University of Genoa





#### **Project Participants**

User: using the product; it could be or not the customer (i.e. ICI commits desulphurization plant vs. Stuttgart City builds a Hospital); it is the reference for operational specifications

Customer: supporting an investment for an external project

Commissioner: announcing the proposal request; he is responsible of the Project during its duration and he is an interface to the contractor.

Contractor: company contracting for the project realization; generally, for big orders there is a *main contractor* and a set of contractors and subcontractors. Sometimes the customer identifies directly a *managing contractor as* contractors coordinator.

Licensee: who provides the license to use patents/ external technologies (i.e. Siemens to Ansaldo on Turbo Gas).

Supplier: supplying services, products, components or raw materials. Regulation Institutions: all the institutions defining standards and regulations impacting on the project



DIDTEM

www.itim.unige.it/pm

# **Project Stakeholders and mutual** Relationships





#### **Contracts Acquisition**



In the Engineering Companies the Plant Project is established with the contract acquisition normally through a competition; the engineering companies offer many different services:

Preliminary Studies Detailed Engineering Education and Training Supplying and Expediting (documents and materials delivery on site) Electromechanical Erection Technical Assistance

Operation & Maintenance Basic Engineering Customer Service Civil Constructions Start up and test Marketing Assistance

During the acquisition process often three different figures are involved: *Marketing Manager* (identifying market), *Proposal Manager* (preparing and presenting proposals to the contract signature), the *Project Manager*.

Often in a Company there is personnel from the different functional divisions intended to serve as Marketing Manager and Proposal Manager institutionally.

Often the lack of connection between Contract Marketing / Proposal and Project Manager affects the efficiency of the PMT (project conditions unknowing, client relationship, personnel demotivation).

DIP Univ



University of Genoa

#### **Plants Development Contracts Types**

There are different Contracts types for plants development. Obviously their nature impacts on the relative project management.

Construction Contract Turn-key Contract Product in Hand Contract Market in Hand Contract Operation & Maintenance Construction Turnkey Construction and start up Plant Facility with construction and use Product Plant Marketing

**Support Service for management and Maintenance** 



#### **Marketing for a Plant Construction**

The marketing is devoted to identify the potential markets and to a preliminary contact with the customer in order to identify his needs and expectations.

It is possible to summarize the Plant marketing phase as: Customer General Requirements Definition Information Searching Preliminary technical indications Preliminary proposals Preliminary Definition of the Customer Specific Needs Preliminary Proposal (Intervention Magnitude Order) Preliminary Testing of Financing Modes Pre-feasibility Evaluation



After the specific needs definition, it is possible to develop the project feasibility study and the normally includes:

Market AnalysisProductLayoutCostsStructural AnalysisFinanSensitivity AnalysisEconoPotential Funding Sources Research

Production Cycle/Process Costs Analysis Financial Analysis Economic Evaluation earch

Location Times Analysis Risk Analysis Recommendations



University of Genoa

## **Feasibility Study Example**

1. Summay 2. Background e Project History **3. Market Size and Plant Capability 3.1 Market Analysis** 3.2 Sales Forecast. Sales Network. Marketing **3.3 Production Plans 3.4 Plant Capability 4. Input Materials and Other Elements 4.1 Required Input 4.2 Supplying Plans 5. Plant Location** 5.1 Localization 5.2 Local Conditions **5.3 Environmental Impact** 6. Design 6.1 Process/ Technology Choice **6.2 Equipment Choice 6.3 Basic Design. Constructive Solutions** 7. Plant Organization and Production Costs 7.1 Production Costs 7.2 Administration Costs (Overheads) 7.3 Mortgage 7.4 Financial Expenses 7.5 Sales Costs 7.6 Other Costs 8. Human Resources: Technical and Management Staff **8.1 Organization Chart** 8.2 Specific Requirements of each Workplace 9. Project Development Plan 9.1 Planning Terrain Acquisition and Correlated Operations • Know - How Acquisition Design Authorizations Specifications Requirements Specifications Study Contracts Supplying (materials and equipment) Erection Commissioning, Start-Up and Check

**10. Financial Evaluation 10.1 Options Evaluation Elements** Investment Useful Life Investments Incomes Operational Costs Fluid Assets • Funds Inflation and Rates **10.2 Evaluation**  NPV(net present value), IRR(internal rate of returns), **TPBP** (time pay-back period) and other indicators Sensitivity Analysis & Risk Analysis **11. Not Ouantifiable Factors Estimation** 12. Risk Management **13. Final Decision 13.1 Conclusions 13.2 Strategies Spectrum 13.3 Final Decision** 14. Project Objectives System 14.1 Objectives **14.2 Critical Parameters 15. Control and Monitoring System 15.1 Data Collection 15.2 Periodicity 15.3 Monitoring and Control Procedures 15.4 Decisional Process** 



# Marketing Phase in a Plant Development Project

Often the Contracts Assignment requires the participation to specific competitions (tenders); the Proposal Manager develops the project of proposal preparation, presentation, negotiation. The tenders are often organized as follows: Pre-qualification of the Potentials Bidders Pre-tenders Selection

#### Participation of the bidders to the Competition

Bidders Instructions Issuance (tender documents) Bidders Qualification Preliminary Meetings (Bidder Meetings) Proposals Preparation Proposals Presentation First Selection

Prices and Payment Terms, Process Technology, Technology Transfer Industrial offsets (countertrade), Nationalization degree, delivery times, Company stability, recent experiences in similar fields, partners, proposal deviations from the tender documents

#### University of Genoa

Preliminary Report Competitors Selection (short list) Proposals Completion Commercial Technical Evaluation Final Report

Negotiation

Commissioner Intentions Final Technical & Commercial Negotiations Financial Package Approval Authorities Approval Contract Assignment Signature

**Proposal Competitiveness & Evaluation Criteria** 



#### **The Contract for Plants Project**

The contract defines all the technical, commercial, financial, legal aspects of the project, among the main types for Plants Project notice:







# Contractual Typologies based on Risks Repartition



University of Genoa



#### **Project Budget**

Budget Plan Development is based on historical data and on general "parameterizations" according to a cost index (ie USD / kW per power plants). The cost assessment often takes into account a "scale factor"

$$C = C_0 \left(\frac{P}{P_0}\right)^M C, P C_0, Po M Cost and Capability of the plant in examCost and Capability of the reference PlantScale Factor (typically between 0.6 e 0.9)
$$\frac{C}{P} = C_0 \frac{P^{M-1}}{P_0^M} \log \frac{C}{P} = \log C_0 - M \cdot \log P_0 + (M+1) \cdot \log P$$$$

This allows to evaluate the Unit Cost based on a historical data linear regression by applying logarithms (parametric-statistic approach)

DIPTEM

University of Genoa





#### **Plant Cost Estimation**



It is based on plant type and size and takes into consideration as reference similar plants already developed by using the "scale factor" and by applying some corrective parameters:

> Location Factor (position influence) Escalation Factor (increases due to time dilation) Contingency Factor (Unexpected events influence) etc.

It is possible to estimate with a level of subdivision for the next refinement stage: Mechanical Plants (cost per ton), Power (kW) and Instrumentation (Control Loops), by considering then the different realization costs (services, transport, civil works etc. .) as percentages on the materials.





#### **Semi-Analytical Evaluation**

It is used for the feasibility study and is based on an branched analysis of the costs that studies the major plant components (items) costs in an analytical way and the remaining entries (ie, bulk materials, services) in a parametric-statistical one; it is based on a default configuration, and then on the basic engineering work.



#### **Analytical Estimation**

It is necessary for preparing the commercial proposal and requires a complete and correct definition of the basic engineering; so for power plants it is possible to refer to Main, Secondary, Auxiliary P&IDs (Process & Instrument Diagrams), General Layout and the Electric One Line General Diagram, as well as to the major components (generator, turbine, boiler, DCS) sizing.

|                                | Transportation  | Personnel      | Equipment                  | Materials     |
|--------------------------------|-----------------|----------------|----------------------------|---------------|
| Examples of Costs are:         | Woighta and     |                | An evaluation              | Possibilities |
| • Engineering                  | volumes         | Estimation of  | of the                     | a) Parametric |
| Materials (bulk materials)     | estimation of   | be carried out | amortization               | b) Based on   |
| Plant Components (items)       | the material to | hours and as   | costs is<br>estimated from | provide by    |
| Transportation                 | be transferred  | Expected Man   | purchase cost              | th .          |
| Civil Constructions            |                 | yield          | and useful life            | engineering   |
| • Electro-Mechanical erections |                 | coefficients.  |                            | ("material    |
| • Erection Supervision         |                 | Escala         | tion                       | take-off")    |
| • Sites Different Costs        |                 | Continge       | encies                     |               |
| Sub-contracts                  |                 | General        | Costs                      | Ш             |
| Technological Licenses         | S               | Financial      | Costs                      |               |
| Maintenance Equipment          |                 | Taxe           | es<br>S                    | R R           |
| • Start up Costs               |                 | Foreign Ex     | change                     | <b>L</b>      |
| • Spare Parts                  |                 | Rever          | nue                        |               |
|                                |                 | etc.           |                            |               |
| M                              |                 |                |                            |               |

University of Genoa

#### **Plant Project Cash Flow**

The contract provides the payment structure, corresponding to the cash-flow (both of the customer both of the supplier); obviously it is regulated by strong financial leverages for big projects due to the time size, to the currency exchanges, materials costs and inflation phenomena. For projects where the user is a private provider of services / goods produced by the plant, the cash flow is strongly influenced by time (i.e. build a fast ferry for a private company or a power plant for a private supplier vs. build a ship for the Navy or a Power Plant for ENEL)



Financial Leverages are used to guarantee less financial expenses. For a project of 150 milion\$ three year duration the financial expenses trend is generally about 3-4% (maybe with a margin of 2-5%)

# **Different Project Typologies**

|                                                    | Lum Sum                 | Reimbursable              | Cost Plus Fee             | Unit Price               |
|----------------------------------------------------|-------------------------|---------------------------|---------------------------|--------------------------|
| Pricing                                            | Very<br>Competitive     | Competitive               | Competitive               | Competitive              |
| <b>Contracting Time</b>                            | Long                    | Short                     | Short                     | Medium                   |
| Scope of Work                                      | Detailed<br>Fixed Scope | General Scope<br>Variable | General Scope<br>Variable | Semi-<br>Detailed        |
| Risk of Extra Costs<br>for the Customers           | Very low                | High                      | Moderate                  | Moderate                 |
| Opportunity to<br>Refund by Claims                 | High                    | Very Low                  | Low                       | Moderate                 |
| Market Characteristics                             | Competitive             | None                      | None                      | Moderate-<br>Competitive |
| Efforts required for<br>finalizing the Negotiation | High                    | Low                       | Moderate                  | Moderate                 |
| Efforts required for<br>Administration & Control   | Low                     | High                      | Moderate-High             | Moderate                 |





#### **Cooperation for the Project Realization**

In the Plant projects there are different participation formulas devoted to the risk subdivision, to the competition reduction, to the integration of different technologies and skills and / or to enter specific markets. These collaborations exist in many forms: **Virtual Company** Legal Company created ad hoc for the Project Consortium **Entity pooling Institutions and Companies Joint Venture Cooperation Agreements for specific Projects Sub-Contracting Commitments Signature from suppliers directly with the Customer** Supplying **Traditional Supply to the Contractor** 



# **Plant Projects: Contract & Milestones**

A Contract for a Plant could be really complex (i.e. contract for a Power Plant can overcome 20 volumes and include ten of thousands of pages) and generally includes a set of *milestones* for instance:

- Preliminaries
   Authorities Approval
   Performance Bond (Contractor)
   Letter of credit (Commissioner)
   Down Payment (Commissioner)
   Down Payment Bond (Contractor)
- Contract Effective Date
- Basic Engineering Commissioner Intermediate Approvals Final Approval
- Detailed Engineering Commissioner Approval
- Procurement
- Manufacturing c/o Suppliers
- General Training and Exercise Staff Specification
- Shipping & Sped Documents Issuance.
- Yard Start up Transportation Civil Works Electromechanical Installations Mechanical Completion Certificate Maintenance Staff Training Testing & Check **Pre-test** No Load Test (Prove in Bianco) Setting to Work Start-up Taking Over Test (Performance Test) **Provisional Acceptance Certificate** • First Operational year (under warranty) Workers Training on Field Final Acceptance Test Final Acceptance Certificate

www.itim.unige.it/pm

# Guarantees per for Plant Project Contracts

To Guarantee Customers bank guarantees are emitted during the project development



#### **Control Tools in the Plant Contract**

These Control Tools expected in the contract include:

Intermediate and Final payments **Payment Completion Postponement** Assignments of Next Contracts **Certification by External Institutions** Inspections and Testing **Technical Guarantees** Extra work Sureties **Contractor Report Expediting Interventions** Insurance **Technical Supervision from Suppliers** Incentives References **Approvals Quality Control & Assurance Auditing Interventions** 

In the phase of Project management for The control of the Plant Project There are the following steps: Billing Advance Variations (change orders) Objections to the contractor for Execution deficiencies Additional Contracts Claims Contract Closure



#### Plant Project Processes and their Phases





Ovviamente l'incertezza su tempi e costi diminuisce al procedere del Progetto

Copyright © 1998-2019 Agostino Bruzzone, Simulation Team

www.itim.unige.it/pm

#### **Project Phases & Correlations**



# Systems and Specialist Processes for Plants

Due to the strong Project uncertainty and complexity, it is important to proceed by successive approximations and to aim to *robust* solutions (less sensitive to randomness) than optimal.



University of Genoa





# The Project-Oriented Organization Structure

Projects are typically part of more extensive organizational structures (services, government agencies, institutions, corporations, companies, etc..). However, sometimes the project is itself an organization (i.e. Joint Venture, Partnering etc.), But obviously the organizational structure affects the Project performance.

The oriented projects Organizations are those for which the ordinary operations consist mainly of projects, then: Organizations working mainly in Projects Organizations using a Project Management. Non-oriented projects have management systems for project management (i.e. Manufacturing companies); sometimes these are less effective and create sub-Oriented Project organizations





# Concepts and Problems related to PM-Oriented Structures

The Project Management expects to have figures that operate as CEOs, even if with engagements restricted to specific application areas and timelines. It is evident that this implies :

Project Manager High Freedom of Action then constraints in top-down structures

Careful Performance Monitoring and Evaluation Procedures; so operational procedures and effective tools

A proper balance between Power, Responsibility in order to guarantee a faster decision making process and weighed choices

DIPTEM University of Genoa



# Functional Organization vs. Design Engineering

Functional organizations are typically hierarchical and every employee has a supervisor; the staff is grouped by specialties (i.e. production, marketing, engineering, etc); Projects in these areas are managed in separate phases where communication spreads in a hierarchical way to cross the structure.

A Project-oriented organization is exactly the opposite, the staff is redistributed based on the projects and responds to the Project Manager, any existing divisions are often devoted to be a service and still the referent is the Project Manager.

There are special matrixes: weak, balanced and strong, that combine features of both approaches



www.itim.unige.it/pm

## **Functional Organization and PM**

**Project Coordination** 



Staff in colored boxes refer to Project Activities affiliation





#### **Project-Oriented Organization and PM**





## **Weak Matrix Organization**



#### Staff in colored boxes refer to Project **Activities affiliation**

University of Genoa



**Project Management for Industrial Plants** 

www.itim.unige.it/pm

#### **Balanced Matrix Organization**



www.itim.unige.it/pm

#### **Strong Matrix Organization**



Staff in colored boxes refer to Project



Copyright © 1998-2019 Agostino Bruzzone, Simulation Team



rdination ght © 1998-2019 Agostino Bruzzone, Simulation Team

#### **Combined Organization**



**Project Activities affiliation** 

University of Genoa
# Organization Structure Influence on the Projects

|                                                      | Organization Type                             |                                               |                                            |                                           |                                     |
|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------|
|                                                      |                                               |                                               | Matrix                                     |                                           |                                     |
| Project Features                                     | Functional                                    | Weak                                          | Balanced                                   | Strong                                    | <b>Project Oriented</b>             |
| PM Autority                                          | Limited or<br>None                            | Limited                                       | Medium/Lo<br>w                             | Medium/Hi<br>gh                           | Very High                           |
| Workforce Rate on the<br>Projects                    | About 0%                                      | 0/25%                                         | 15-60%                                     | 50-95%                                    | 85-100%                             |
| Project Manager Task                                 | Part-Time                                     | Part-Time                                     | Full Time                                  | Full Time                                 | Full Time                           |
| Regulation &<br>Stardards used by<br>Project Manager | Project<br>Coordinator<br>/ Project<br>Leader | Project<br>Coordinator<br>/ Project<br>Leader | Project<br>Manager/<br>Project<br>Officier | Project<br>Manager/<br>Program<br>Manager | Project Manager/<br>Program Manager |
| Project Management<br>Administration Staff           | Part-Time                                     | Part-Time                                     | Part-Time                                  | Full Time                                 | Full Time                           |



Copyright © 1998-2019 Agostino Bruzzone, Simulation Team



## **Project Manager Skills and Features**

The Project Manager needs to have experience and good knowledge about the following sectors:

**Finance and Accountability, Commercial and Marketing**, **Research and Development (R&D), Manufacturing and Delivery Strategic, Tactical and Operational Planning Companies Organizational Structures,** Human Resources Management, **Benefits and Career Orientation** Skills to manage the work by motivating people, by supervision and delegation, team building, conflicts management, etc.

DIPTEM University of Genoa



## **Drive and Manage a Project**

The necessity of managing resources requires: To define long term strategically lines for project development To involve and align the staff, by keeping information about skills developments

Motivate, Coordinate and Inspire the involved staff; that requires technical and communication skills

Some schools (and companies) think that it is possible to train and educate Project Managers in this field (i.e. Aramco), while others expect to select as Project Manager only skilled people by distinguishing careers (i.e. SNAM Projects).





## **Communications & Project Manager**

Due to the projects size and complexity, Communications must be carefully managed and set up, the Project Manager is responsible for:

Approval/Set up/Definition of Communication Models and Procedures

Supports Identification and definition of situations for their use (i.e.when remarks, when oral report, when formal report)

Set Up and Control Communication Style Presentation Skills

Know and Apply Techniques to manage Meeting



## **Negotiation & Project Manager**

In the Project Management contracts with customers and suppliers require continuous exchanges negotiation, changes etc.

The skills of people following the negotiation should include technical aspects in order to evaluate and exploit well all the impacts.

Project Management is responsible of guaranteeing that during these phases the following elements are clear:

Objectives, Costs and Times Current Contact Time-Limits Contracts Assignments Resources Status Changes Impacts on Project Times, Costs and aims



## **Problem Solving & Project Manager**

Problem Solving techniques should be applied continuously in the complex projects management because of their not repetitive nature. These techniques are based on two key issues:

Problem Definition: Distinguish Causes from Effects and Identify them Correctly Decision Making: Critical Analysis of the situation and consequences enhancement

The Project Manager is responsible of the success in applying these techniques and to oversee the proper setting of techniques, methodologies and tools to achieve successfully the problem resolution





## **Influencing the Organization**

As the Project Manager receives a mandate for a very independent resources and money administration, and considering the inevitable unexpected events during a project, it is essential to have *political* capabilities to ensure an effective influence on the structure in order to have support.

As highlighted by the experts, however, these activities may tend to spread completely unproductive and not paying cycles and "games" respect to the specific objectives for the overall organization.

In this case it is important to underline the necessity of the ability to influence and persuade the organization to support the policy to be implemented without triggering internal conflicts.





# Socio-Political Aspects and Project Management

Due to their duration and size, many project are influenced by external factors.

Being evident the impossibility to control them, it is fundamental to observe them constantly in order to promptly react and reduce risks.

Today a really important factor is the *Internationalization* including the necessity to verify the project feasibility, during the set up and the development phases, and the capability of finding new resources.

The *Globalization* increases competition problems on one hand, but on the other it could provide an interesting and more convenient market of suppliers, skills, products and services.



# Cultural Influence & Project Management

The Cultural Influences can't be forgotten (i.e. the American Manager going to Canada receive notes (breviari) suggesting different attitudes with executive English rather than French speaking : speaking distance, gifts for his wife for a diner, handshake type).

It is evident that these aspects both for customer relationships both for products/workforce suppliers must be carefully considered specially in case of projects to be developed in order to evaluate times costs, unexpected events and risks.

For instance Italy developed an effective relationship with both Middle East than many Asian coutries (Pakistan, Cina, etc.).

DIPTE



## **Standards & Regulations**

## **ISO Standard defines :**

*Standard*: a document approved by a recognized institution, to be used repetitively and including commonly rules, guidelines and specifications for products, processes or services; for these is still not obligatory to respect these rules

*Regulation*: a document presenting products, processes or services identified by characteristics, including the applicable administrative procedures, for which compliance is mandatory.

Obviously Projects discussions on standards and regulation are very important and affect time, cost, resources and trading. Fundamental question therefore is whether the standards are de facto Regulations, if they are devoted to become mandatory for certification institutions requests, etc..





## **Project and Processes**

Due to the projects nature every action, or missed action, usually involves an effect on many other following actions; as often different stochastic factors, uncertainties etc. are involved, the impacts evaluation is not always immediate.

It is possible to identify some Project components in order to analyze it more easily:

> Project Processes Process Groups Process Interactions

Processi Gruppi di Processi Interazione fra i Processi



## **Project Processes**

Let's define the Processes by considering that the Projects are composed by Processes. A *Process* is a set of actions leading to a result. There are two types of process:

 Project Management Processes: related to the Process Activities Presentation and Organization
 Product-Oriented Processes: related to the Project product development.

These aspects are often overlapping (in fact the process Project purpose identification Process [PM process] can not be separated from the knowledge of how to create the product [Product-oriented process])





# Processes Groups in Project Management

The Project Management Processes can be organizedInto five groups:Start Up Processes:Identify that a project/phase can startPlanning Processes:Planning organize a job schedule to achieve

**Execution Processes:** 

**Control Processes:** 

## **Closure Processes:**

Coordinate men and resources to operationally develop plans

the objectives

Measure performances and control the situation to know the current status and to control corrective actions

Formalize the developed Project/Phase acceptance



**Project Management for Industrial Plants** 

www.itim.unige.it/pm

## The Five Processes Groups for a Plant Project Development

Connections among the Processes in a Project Phase

Planning Processes

Start Up Processes

Closure Processes

**Control Processes** 

**Execution Processes** 

DIPTEM University of Genoa

Copyright © 1998-2019 Agostino Bruzzone, Simulation Team



www.itim.unige.it/pm

## **Processes Groups Overlapping**



www.itim.unige.it/pm

## Interaction among the Different Phases: an Example for Better Understanding





In the reality the system is more complex due to the fact that the different internal groups exchange information each other.

Next Phase

Often it is adopted the *rolling wave planning technique:* detailed planning of the current phase and a draft of the next one

DIPTEM University of Genoa



## **Groups Interactions**

Groups or single processes interactions are based on the direct connection of:

Input: required documents, materials to start the process Output: documents, works made by the process Tools & Techniques: mechanisms providing outputs from input

It is fundamental to know that there are different processes and techniques, even if the team multidisciplinary allows to keep specific technical skills to everybody



Copyright © 1998-2019 Agostino Bruzzone, Simulation Team Copyright © DIP Genoa Universi



## **Start Up Process**

Let's see some details about Start Up Processes Group Interactions by focusing on the most famous processes:

## **Start Up Processes**

2.1 Preliminary Analysis To Planning Processes





## **Planning Processes Group**



University of Genoa

Copyright © 1998-2019 Agostino Bruzzone, Simulation Team



## **Execution Processes**





Copyright © DIP Genoa University 1998

## **Control Processes**



## **Closure Processes**





From Control Processes

Let's see in detail the Project Closure Processes Interactions directly connected to Control Processes Group





## **Start up and Closure Processes**

**Start up Processes** 

2.1 Preparation Analysis Organization activation to start Project Phases

**Closure Processes** 

7.4 Documentation Administration Closure

 Documentation Development and Distribution for the different phases completion

 9.6 Contracts Closure

 Closure of contractual terms and open points resolution





## **Planning Processes: Core Processes**

**2.2 Objectives Planning** 

**Develop a Document related to Project Objectives** 

**2.3 Objectives Definition** 

**Elaborate Objectives and Main Alternatives in deliverables** 

### **3.1 Activities Definition**

Identify activities to be set up to achieve the deliverables

**3.2 Activities Sequences** 

**Identify and Produce Documents about Dependencies and Interactions** 

#### **3.3 Activities Duration Estimation**

Estimate work period required by activities **3.4 Scheduling Development** 

Analyze sequences, duration and objectives and create scheduling

#### **4.1 Resources Planning**

Allocate Resources to each activity

4.2 Costs Estimation

Estimate costs for each activity

4.3 Costs Budget

Allocate total costs to the different jobs/sectors

## **1.1 General Plan Development**

**Collect Results of the Different Planning Processes into a single Coherent and Full** Document



# Planning Processes: Facilitating Processes

**5.1 Quality Planning** Identify quality standards for the project and the instruments to be used to apply them 7.1 Communications Planning Define the needs and the communications means with stakeholders 8.1 Risks Identification Identify risks affecting the Project and study their features 8.2 Risks Ouantification Evaluate the Risks and their interactions and their impact on the project 8.3 Risks Solutions Development **Define Procedures and activities to face Project Risks 9.1 Suppliers Contracts Planning** Define what to acquire and when 9.2. Proposals acquisition planning Collect information about specific components and identify potential suppliers **6.1 Project Organization Planning** Enroll people for the Project, Define Responsabilities, report methodologies and identify documentation and modules **6.2 Staff Employment Acquire Human Resources to develop the Project** 



# Execution Processes and their Components

**1.2 Project Plan Execution Proceed with Project Development based on predefined activities 2.4 Objectives Check** Formalize the Project Objectives acceptance **5.2 Quality Policies Application Control the qualitative level and apply corrective actions 6.3 Working Team Development Develop Individual and Group Capability to improve the Project** 7.2 Information Distribution Share the useful information with customers and stakeholders 9.3 Proposals Acquisition Acquire proposals based on Needs **9.4 Supplier Selection** Select Suppliers among the potential ones 9.5 Contracts Management and Administration **Manage Contracts with Suppliers** 



## **Control Processes**

1.3 Project Changes Control Coordinate the changes along the project

2.5 Objectives Changes Control Control the final objectives evolution

3.5 Scheduling Control Control Scheduling respect

4.4 Costs Control Control Budget Changes

#### **5.3 Quality Control**

Continuous Parameters Monitoring in order to evaluate Quality Level and define Corrective Policies facing noncompliance





## **Processes and Interactions: Tailoring**

The proposed scheme, even if general, has not to be considered an indispensable reference; different project needs or plant types may require to change the proposed structure by adding or reorganizing the processes structure.

However, it is clear that the planning phase is critical for the proper project execution, but also the auxiliary phases need to be carefully conducted, based on the technical approach, in order to properly meet the end users.





## **The Nature of the Processes**

The processes require normally:

Human Resources with specific competencies Times affected by uncertainties Technical and Operational Requirements

Since the projects are not characterized by repetitive behavior it is difficult to identify typical behaviors without any experience in the application area.

The implementation of techniques of analysis and calculation, however, allows to express quantitatively the correlations between processes and resources making easier the planning and reorganization process.



